
NASA Contractor Report 187504

6"/¢ 73

Towards Composition of Verified Hardware
Devices

E. Thomas Schubert

K. Levitt

University of California

Davis, California

G. C. Cohen

Boeing Military Airplanes

Seattle, Washington

NASA Contract NAS1-18586

November 1991

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665

(NASA-CR-I _7504) T_QWARnS

V_RIFIED HARDWARE OFVICFS

Airp| anP 9evelopinenk) 58

C_MPOSITI_ OF

(Boeing Mili_ry

p CqCL 09B

_3/o0

N92-15551

Unclds

00_1._7_





PREFACE

This document was generated in support of NASA Contract NAS1-18586, Design and

Verification of Digital Flight Control Systems Suitable for Fly-By-Wire Application, Task

Assignment 3. Task 3 is associated with formal verification of embedded systems.

Computers are being used in areas where no affordable level of testing is adequate.

Safety and life-critical systems must find a replacement for exhaustive testing to guaran-

tee their correctness. Through a mathematical proof, hardware verification can formally

demonstrate that a design satisfies its specification. However, hardware verification re-

search has focused on device verification and has largely ignored system composition veri-

fication. To address these deficiencies, we examine how the current hardware verification

methodology can be extended to verify complete systems.

The NASA technical monitor for this work is Sally Johnson of the NASA Langley

Research Center, Hampton, Virginia.

The work was done at Boeing Military Airplanes, Seattle, \Vashington and the Uni-

versity of California, Davis, California. Personnel responsible for this work include:

Boeing Military Airplanes:

D. Gangsaas, responsible manager

T. M. Richardson, program manager

G. C. Cohen, principal investigator

University of California:

Dr. K. N. Levitt, chief researcher

E. Thomas Schubert, PhD candidate



ii



TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION .....................................................................1

2.0 BACKGROUND

2.1

2.2

2.3

2.4

2.5

°°=,.O=O=OWOW°.,°O,O4,=°,O*OO° =, =.Io°° 0=,°Og°= J" =°°°°°'I I =='=°°'= O=W=O 3

Reliable Systems ................................................................. 3

Secure Systems .................................................................. 4

2.2.1 Security Kernel ............................................................ 5

Hardware Verification ........................................................... 6

Related Work .................................................................... 7

Memory Management Units .................................................... 8

3.0 ABSTRACTION ...................................................................... 11

3.1 Interpreters ............................................................ -. ......... 12

3.2 Hierarchical Decomposition ..................................................... 13

3.3 Generic Theories ................................................................. 14

3.4 Temporal Abstraction ........................................................... 15

4.0 VERIFYING COMPOSED DEVICES .............................................. 18

4.1 CPU-MMU-Memory System Verification ...................................... 23

4.2 Sampler-CPU .................................................................... 24

4.3 Pipelines .......................................................................... 25

4.4 Coprocessors ..................................................................... 26

4.4.1 68000 Coprocessors ........................................................ 27

4.4.2 8087 Coprocessor .......................................................... 34

5.0 SUMMARY OF APPROACH ........................................................ 39

6.0 CONCLUSIONS ....................................................................... 40

REFERENCES ....................................................................

APPENDIX A: HOL ......................................................................

A.1 The Language ...................................................................

A.2 The Proof System ...............................................................

42

45

46

48

APPENDIX B: CALCULUS OF COMMUNICATING SYSTEMS ................... 50

B.1 transitional semantics ........................................................... 52

III

PRECEDING PAGE BLANK NOT FILMED



LIST OF FIGURES

Figure Page

3.2-1A HierarchicalMicroprocessor Specification.........................................14

3.4-1Temporal Abstraction Mapping Function ...........................................15

4.0-1Composition Lattice...................................................................19

4.2-1Sampling Time Granularity ..........................................................25

4.3-ITemporal Abstraction for Mini Cayuga Pipeline....................................25

4.4-1CPU and FPU Concurrent InstructionExecution ..................................32

4.4-2CPU and FPU States .................................................................33

4.4-38086/8 - 8087 Interface...............................................................35

4.4-48086/8 System .........................................................................37

LIST OF TABLES

Table Page

4.4-IAbstract Level State Pair History ....................................................36

A-I HOL Infix Operators ...................................................................47

A-2 HOL Binders ............................................................................47

A-3 HOL Type Operators ..................................................................4S

iv



1.0 INTRODUCTION

This research is directed towards developing a methodology to verify a hardware base for

a safety critical system. Such systems are composed of many interacting devices. The top

level hardware specification is apt to suggest a unitary implementation. While this abstrac-

tion is convenient for verifying the correctness of software executing on the hardware base,

the implementation consists of many different interacting components (central processing

unit, memory, coprocessors, input/output devices, bus controllers, interrupt controllers,

etc.)

Previous approaches to system verification have formed vertically verified sys_em_.

These efforts have aimed at illustrating how hardware verification can be used to close

the semantic gap between high level languages and the computer's instruction set. Sys-

tems axe divided into layers that can be verified independently. Each layer consists of

an implementation and a more abstract specification. Implementation layers serve as a

specification for the next lower level (ref. 1). In this way, higher levels of the stack define

new functionality by composing the next lower level's functionality. The base for these

systems (a microprocessor-memory pair) has been an unrealistic hardware platform.

This research focuses on the development of verification techniques which support hor-

izontal integration of devices. In addition to demonstrating horizontal integration verifica-

tion methods, the research will contribute new abstraction techniques, integrate differing

proof techniques, and extend the interpreter model to describe communicating devices. 1

The interpreter theory (refs. 2 and 3) is well suited to the problem of verifying the correct-

hess of a single device, but does not provide an adequate model to reason about composed

systems. A complementary technique will be developed so that device intercommunication

properties can be verified.

We consider three device composition problems which current hardware verification

methodologies do not adequately=_address: shared state, time granularity (temporal ab-

straction) and synchronization/communication specification problems. To investigate ver-

ified device integration we have examined three examples of composition: A CPU with a

ITo describe the extensions, the term communicating interpreters has been coined.



memory management unit; a CPU with a floating point coprocessor; and a CPU with a

"sampling" peripheral device. These examples will be described in subsequent sections.

Support chips we plan to incorporate include an interrupt controller and a direct

memory access (DMA) device. These devices are being verified as independent processors

by other members of the verification group. We would also like to verify and integrate other

coprocessors (UART, network interface device). In general, communication between these

devices is through a bus controller which must also be verified. The potential interference

problems, mentioned above, must be addressed.

These devices can modify shared state in ways which make the verification of the

integrated system difficult. For example, the meaning of the load instruction is that at

abstract time _÷I the value in some register is the same as the value in the memory

location at time t. Consider interactions at a finer grain of time. Suppose during a load

instruction of the interrupt controller's status register the interrupt controller changes the

status register value (which is forwarded to the CPU). The interrupt controller providing

the latest update (post _) would violate the semantics of the load instruction.

As another example, consider a DMA specification. Abstractly we would like to say

that the effect of a DMA read operation is to change a region of memory. This specification

states that the effect of its operation is to transfer some amount of data from a peripheral

device (e.g., secondary storage)t0some location in memory and generate an interrupt when

the transfer is complete. This operation will often require sufficient time so that some other

device could modify the specified memory region before the operation is complete this

would violate the abstract DMA read specification.

These examples suggest that composing a system with high-level abstract specifica-

tions of device operations is not always possible. The verification of the system inherits

from the separate proofs a set of assumptions which must be enforced at a higher level.

2



2.0 BACKGROUND

2.1 RELIABLE SYSTEMS

Life-critical systems are becoming increasingly dependent on computer systems. The need

for verified systems is quite real. To cite a few recently published accounts:

a. AT&T suffered significant losses in January, 1990 when a software problem caused

large parts of their long-distance telephone switching network to fail (ref. 4).

b. A "fly-by-wire" Airbus A320 aircraft in Bangalore, India crashed in February, 1990.

A definitive cause for the accident has not yet been established. Preliminary in-

vestigations suggest that the control computers might well have performed to spec-

ifications. However, the fact that A320 employs a fully electronic cockpit with no

mechanical backup for control has raised much speculation about the computers' role

in the crash (ref. 5).

e. During congressional hearings last year, it was established that incorrect software

caused an x-ray machine to emit lethal doses of x-rays.

d. The 80386 has had several releases to correct for errors which were undetected before

shipment. Thirty one errors were found in the first revision (A1 stepping) ranging

from alignment problems to instructions performing incorrectly. Many of these er-

rors permitted protection violations. The second revision (B0 stepping) had twelve

additional errors. Fourteen errors were found in the third revision (B1 stepping)

including a well publicized multiplication error. This failure is extremely pattern

sensitive and not exhibited in all B1 CPUs (ref. 6).

Faults resulting from design errors are especially difficult to protect against and can

compromise critical functionality (ref. 7). There are two main techniques to ensure re-

liability: fault tolerance and fault exclusion (ref. 2). Fault tolerance is concerned with

designing systems to recognize and handle faults when they occur. Through redundant

components, fault-tolerant systems present an illusion of ultrareliability. These systems do

not exclude errors due to specification or implementation flaws. Building reliable systems



out of unreliable components does not guarantee a safe and secure system. Fault exclu-

sion however, attempts to exclude design faults. Simulation is the most frequently used

method to exclude faults. While simulation may discover the presence of errors, it cannot

guarantee the absence of errors. Hardware verification can be used to uncover all design

errors.

2.2 SECURE SYSTEMS

A significant body of work exists that covers the software necessary for secure systems

(refs. 8 and 9). Operating systems must provide efficient and reliable protect!on features.

Not only must an operating system protect against malicious software, but also against

unintentionally errant programs. Using security kernels (reference monitors) is the most

frequently used technique to build a highly secure operating system (see section 2.2.1).

Secure operating systems are designed based upon an abstract model defining security

requirements. To prove a system secure, it is necessary to show that there is no information

leak and that the operating system implements the model. The lower level hardware base

has not received as much attention. Yet protection flaws in the hardware can easily be

exploited by programs which circumvent the operating system.

Most hardware mechanisms necessary to implement security are also required by con-

ventional operating systems. User programs must be inhibited from accessing system

resources without prior authorization. This requirement can be satisfied by systems with

memory protection, protection rings (or modes), and restricted I/O instructions.

The need for hardware design verification is recognized by the DoD Trusted Computer

System Evaluation Criteria, however, hardware design verification has been informal and

incomplete to date. The Honeywell SCOMP (Secure Communications Processor) operat-

ing system is the first system to have been classified A1 (highest assurance) by the National

Computer Security Center. The verification effort concentrated on showing that the op-

erating system software enforced a Bell-LaPadula security model. The informal hardware

verification approach has two problems: 1) an incomplete coverage of design (and imple-

mentation) analysis and testing; and 2) an incomplete formal top-level specification of



the hardware functions visible at the trusted computing base (TCB) interface (ref. 10).

Guttman proposesextending the SCOMP verification to lower levels (abstract hardware

specification)whereseveralcomponents(processtable, pagetable, CPU, memorymanage-

ment unit) all interact. This work would dischargethe assumptionsmadeby the software,

complementingthe SCOMP verification (ref. 11).

2.2.1 SECURITY KERNEL

A security kernel isolates all security mechanisms in a small distinct software layer between

the hardware and the conventional operating system. A security kernel must rely on the

hardware for several functions.

As efficiency is critical, hardware protection support is essential. Certainly the op-

erating system software cannot check each instruction before allowing it to execute. The

security kernel requires both process support and memory protection support from the

hardware.

A security kernel must satisfy three fundamental requirements:

a. completeness.

b. isolation.

c. verifiability.

For the security kernel to satisfy the completeness requirement, user processes must

be unable to bypass the reference monitor, The reference monitor must be invoked before

any subject references an object. Objects include files, memory and I/O buffers which

operating systems typically manage. Other types of information also exist (file names,

directory structures, status registers, system use data). These data must also be described

in the reference monitor's security policy specification.

5



The completenessrequirement imposesthe following demandson the underlying hard-

w/_re°

a. The kernel must trust the hardware to make checks during the execution of untrusted

programs. All references to memory, registers and I/O subsystems must be checked.

b. Processes must be isolated from one another.

e. All communication between processes must be mediated by the kernel.

The isolation property requires that the security monitor must be tamperproof. The

operating system must be able to protect itself from accidental (or otherwise) attempts

to accesses. Hardware memory management must prevent user accesses to kernel code or

data. Processor instructions that the kernel uses to provide memory management must be

privileged----executable only by the kernel.

The hardware design must also be verified. The kernel and trusted software rely

on a system's hardware and some of the kernel mechanisms are directly provided by the

hardware itself. Design flaws in the hardware protection mechanism may become visible to

processes running on top of the kernel--making the implementation of a reference monitor

impossible.

2.3 HARDWARE VERIFICATION

Hardware verification requires that the design of a system is formally shown to satisfy

its specification through a mathematical proof. Using theorem proving techniques, an

expression describing the behavior of a device is proven to be equivalent in some sense

to an expression describing the implementation structure of the device. These expressions

concisely describe the behavior of devices in an unambiguous way. An additional benefit of

hardware verification is that the behavioral semantics of the hardware are clearly defined.

This provides an accurate basis for building correct software systems (ref. 1).

Verification is expensive and requires a substantial amount of time. While all develop-

ment efforts would benefit from the use of formal methods, presently only the verification

6



of life-critical and security properties merits the expense. Tools such as HOL are still

under development. The theory libraries are not yet sufficient for general use. Further,

techniquesand methodologiesto verify large systemsarenot available.

The HOL system is describedin appendix A. Circuits and devicesare describedin

HOL using a mixture of functions and predicates. Universally quantified variables are

usedto specify input and output device lines while internal device lines are existentially

quantified. The specifications aregenerally defined to model a state transition system. A

specification definesthe state and environment at time t+l, as a function of the state and

environment at time t.

2.4 RELATED WORK

Newman proposes a unified hierarchy that accommodates all critical requirements (ref. 12).

Responsibility to satisfy each requirement can then be delegated to an appropriate layer

of the design. The layers remain interdependent; the more abstract layers relying on the

correctness of the lower levels. Formal proofs about the hardware level discharge some of

the assumptions made by higher, software levels. Similarly, hardware level proofs often

make assumptions about the behavior of the software which are discharged when the level

is composed (ref. 11).

Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer systems (refs. 2, 13, 14 and 15). Perhaps the best known ver-

itlcation effort is that of the VIPER microprocessor (refs. 13, 16 and 17). VIPER is

the first microprocessor intended for commercial distribution where a formal verification

has been attempted. However, these processors are quite limited. The processors veri-

fied have modeled small instruction sets and, generally, have not included modern CPU

features such as pipelines, multipled functional units, and hardware interrupt support.

Tamarack-3 (ref. 2) and AVM-1 (ref. 3) do provide sufficient interrupt support to connect

with an interrupt controller. However, no system currently verified provides the memory

management functions necessary to support a secure operating system.



Previousefforts to verify systems have attempted to construct vertically verified sys-

tems with a microprocessor/memory as the system base. Joyce has verified a compiler

level whose target machine description is the specification of the verified Tamarack-3 mi-

croprocessor (ref. 18). Computational Logic Inc. has attempted to verify a "stack" of

interpreters where the implementation of a level is the specification of the next lower level

(ref. 1). The "stack" consists of a compiler (Micro-Gypsy) an assembler and linking loader,

an operating system and a microprocessor. The operating system KIT, is not actually a

true part of the stack. The KIT project designed and Verified an operating system which

supports multiple processes and asynchronous I/O. User processes are able to communi-

cate only through message passing which is implemented by the kernel. This ensures that

tasks are isolated from one another. However, the hardware base has not been designed

nor verified. Bevier assumes extensions to the FM8502 microprocessor (ref. 15) to provide

interrupts, asynchronous I/O, memory management and supervisor-mode instrfictions.

2.5 MEMORY MANAGEMENT UNITS

The memory management unit (MMU) is a critical component within a computer system

necessary to ensure security. The MMU may be a subcomponent of the CPU (e.g., In-

tel 80386), but it may also be a separate processor (e.g., Motorola 68851). The memory

management function can prevent an executing process from accessing or modifying main

memory locations which were not allocated to the executing process. An extended mem-

ory management scheme such as LOCK, also protects secondary storage from undesired

manipulation.

The MMU enforces security constraints by validating each CPU request to memory.

When a request is outside of the bounds allocated to an executing process, the MMU

alerts the CPU of the memory violation. The operating system kernel software can then

terminate the process.

The MMU also supports dynamic code relocation and virtual memory. From the

perspective of each process, memory is a contiguous sequence of addresses. However, for

efficient memory management, a multiple process operating system will divide each process

memory space into pieces (segments, pages). Each piece can be placed in noncontiguous lo-



cations within the real memory. During execution, the MMU translates a process requested

virtual address into a real address.

The area accessible to a process is defined by a table present in memory which is cached

by the MMU. The operating system kernel (executing on a verified CPU) is responsible

for configuring these tables in an appropriate manner. For example, the kernel should not

permit a user process to access this table.

We have verified two simple memory management units (ref. 19). The verification

demonstrates the use of hierarchical decomposition and abstract theories. Both devices

authorize memory requests and translate virtual addresses to real addresses. The first

unit is designed and verified to the gate level. The second memory management unit

is implemented with an abstract representation and provides greater operating system

support. Memory requests are validated based on a memory resident segment table.

The design permits operation in two different modes: user (process) mode and su-

pervisor mode. In supervisor mode, the MMU passes each request through to memory

without validation. In user mode, the MMU performs a table lookup to determine if the

request is legitimate. Each address consists of a segment identificr and a segment offset

component; the segment identifier serves as the index into the memory resident (segment)

table. Each segment table entry will define the availability, access rights (read-only, read-

write, executable), length, and the physical address in memory for the segment. Assuming

the request satisfies the segment table constraints, the MMU validates and constructs a

physical address for the request.

The operating system (executing in supervisor mode) can construct a unique table in

memory for each process. Before a process executes, the MMU must be informed of where

in physical memory the table is located (segment table pointer register).

The addition of an MMU to a memory system modifies the behavior of the memory

extensively. In user mode, the MMU presents an abstract view of memory to a process

where memory is divided into segments of varying size and with protection unique to the

segment. Note that this abstraction is presented to the CPU/operating system. However,

the operating system, in turn, may present some other abstraction of memory to executing



processes.

To enhance performance, a device to cache table entries is being designed. A further

enhancement will add greater support for task switching. The current MMU design requires

the cache to be flushed each time the segment table pointer register is changed. This

significantly reduces the cache performance. Performance can be improved by adding a

set of segment table pointers to the MMU and appending a process identifier to cached

values. The process identifier corresponds to one of the segment table pointers. When

one of the segment table pointers is modified, only those cached entries with a matching

process identifier would be flushed.

10



3.0 ABSTRACTION

Abstraction is a central concept within computer science as well as mathematics. It also

plays a fundamental role in hardware verification. Hardware verification can be defined as

formally demonstrating that a hardware design satisfies a more abstract specification de-

scribing its behavior. The abstract specification suppresses irrelevant detail or information

so that the description focuses only on the items of interest.

For example, a microcoded microprocessor specification would describe the effect of

each instruction on the user visible state of the machine (registers, memory). The im-

plementation state space is significantly larger and includes many details not pertinent to

the assembly language programmer (e.g., microcode instruction pointer, memory address

register, memory data register, buffer registers, latches, etc.). To demonstrate the design

is correct, the microinstruction sequence corresponding to each instruction must be shown

to correctly modify the user visible state.

Techniques for proving the correctness of hardware designs use abstraction mecha-

nisms for relating formal descriptions at different levels of detail. Four such abstraction

mechanisms and their formalization in higher order logic are discussed in (ref. 20). These

include _tructural, behavioral, data and temporal abstraction.

The description of a device's implementation will contain explicit information about

its structure while the specification of a device should reflect only its externally observable

behavior. Structural abstraction provides a means of denoting what information is internal.

Specifications frequently only partially describe a device's behavior. The behavior

in certain states or for certain input values is left unspecified. When a device will never

have to operate in these states or for those inputs, the specification of its behavior is

unnecessary. Behavioral abstraction relates a partial specification to an implementation

that fully describes the device's behavior.

Data abstraction constructs a mapping function relating concrete data types to ab-

stract data types. This mapping is then used to show that the operations carried out on

low level data types correctly implement the desired operations on the high level types.

11



Temporal abstraction mechanismsare used to map between different 'grains' of dis-

crete time. Relating the levelsof temporal abstraction involvesmapping points or periods

of low level time to points or periods of high level time and showing that a many-step low

level computation implementsa one-stephigh level computation.

3.1 INTERPRETERS

The general interpreter model can be used to describe state transition systems. Interpreters

can be differentiated from other models by their monolithic treatment of state and their

flat control structure. The interpreter selects one of a fixed set of actions based upon the

current state and returns a new state. The model incorporates four parts:

• A representation of the state S.

• A set of state transition functions defining the denotationa] semantics for each inter-

preter action (instruction) J| : Si x Env _ Sj.

• A next state function which selects an appropriate state transition function given

the current state K : Si "+ Ji.

• A function I, relating the state at time t + 1 to the state and environment at time t

using K and J.

Correctness is a relation between a specification and implementing interpreter such

that:

I,,,,_,,[s,,,,e,,,]=_, I,,,_[s,_of,e.o:]

where f is a temporal abstraction function (see section 3.4) relating the differing specifi-

cation and implementation time granularities. The state space s, and environment e,_ are

abstractions of the implementing state space s,, and environment era, respectively.

12



3.2 HIERARCHICAL DECOMPOSITION

Systems can be decomposed into a linear hierarchy of abstract machines where each ab-

stract machine is implemented by the next lower level machine (ref. 21). Each level

depends only on the function provided by the next lower level. The system is verified by

proving the implementation correctness between all levels. This can greatly reduce the

verification effort as each level can assume the lower levels have been verified.

Previous hardware verification efforts have attempted to show that the structural de-

scription of a device directly implies the top level behavioral description. For example, the

Royal Signals and Radar Establishment (RSRE) had initially inserted a major state level

between the electronic block model and the top level. However, Cohn discarded this inter-

mediate level when performing the formal verification. Proving the correctness of VIPER

became an enormous effort and was not completed. Using case analysis, approximately

120 independent large theorems had to be proved (one for each instruction). Each theorem

must reason about the structure in similar ways. For example, instructions and operands

are fetched in the same manner for each instruction. This commonality was not exploited.

Windley proposed adding several intermediate abstract behavioral levels in a hierarchy

to take advantage of the similarity between cases (ref. 22). Rather than the verification

showing that S ==_B, several increasingly abstract specifications of the system's behavior

can be defined and the system's correctness proved by showing:

S_B1 _ ... =_ Bn.

The amount of effort necessary to verify a microprocessor is substantially reduced by

using hierarchical decomposition. A hierarchical microprocessor verification effort can be

structured as shown in figure 3.2-1 from (ref. 3). The macro level specification defines the

behavioral specification as viewed by the programmer. A microcode interpreter and phase

(or subcycle) behavior level have been inserted between the top level specification and the

implementation (here the electronic block model).

The difficult proofs are between the electronic block model and the phase level where

there are a small number of instruction cases (two to four). This reduces the overall effort

by at least an order of magnitude.

13



The abstract behavior levelsaredefinedasinterpreters. Their similar structure allows

the proofsbetweenlevels to be regular with most of the work being automatable.

Macro LevelSpecification

T
Micro LevelSpecification

i
Phase Level
Specification

T
Electronic BlockModel

Figure $._-I: A Hierarchical Microprocessor Specification

3.3 GENERIC THEORIES

Generic theories are described in greater detail in (ref. 3). A generic theory consists of

three parts:

a° An abstract representation of the uninterpreted constants and types in the theory.

The abstract representation contains a set of abstract operations and a set of abstract

objects. The semantics of the abstract representation are unspecified. Inside the

theory, we don't know what the objects and operations mean.

b.

obligations.

A list of theory obligation predicates defining relationships between members of the

abstract representation. When a theory is instantiated, these predicates must be

proven about the concrete representation. Within the theory, the obligations repre-

sent axiomatic knowledge. The abstract MMU theory does not contain any theory

c. A collection of abstract theorems about the representation.

14



Using the abstract theory package,a set of selector functions can be created. When

applied to an abstract representation, a selector function extracts the desired function.

For example, instead of dealing with concrete data types such as bitVectors with

a specific length, the abstract MMU works with data values of abstract types *wordn,

*address and *memory. The abstract representation provides a set of functions which

manipulate these types.

3.4 TEMPORAL ABSTRACTION

Temporal abstraction plays a significant role in this research. An implementation design

typically gives more detail about how a device behaves over time than defined in its abstract

specification which concentrates on "interesting" points of time. An abstraction function

suppresses the implementation time points not of interest to the specification. These

functions create a coarser view of time from a finer grain of discrete time.

The grain of time at the implementing level may have no direct relation to real time.

The intervals may correspond to the changing of values on clock lines. However, if the

clock stopped for a period of time, there would be no points of fine grain time during that

interval.

For each step of high (coarse) level time, a temporal abstraction function specifies

a corresponding step in low level time. In figure 3.4-1, to,... ,t4 represent time points

relevant to an abstract behavioral description. Points t_,..., tl0, represent time at a lower

implementing level. The function f maps to to t_, tl to t_, etc.

f0 tl f2 f3 t4

0 0 0 0 0 0 0 0 0

Figure 3.4-1: Temporal Abstraction Mapping Function

15



The mapping function must be increasing so that f(t_) > f(t_+l) for all i. Note that

the number of low level ticks consumed for a single high level tick need not be constant or

regular.

The increasingabstraction function can be used to formulate correctness statements.

Let signalssi9and si9' of type :num-bool correspond to signalsat the abstract and imple-

menting levelsrespectively.Iff isa temporal abstraction function, then:

Vt. sig(t)= sig'(f(t)) or sic = sic' o/

Given an implementation Imp requiring two signals (a and b) a specification Spec,

and a temporal abstraction function 2 f, a correctness statement can be defined:

Va b.Imp(a,b) ==_Spec(a o f,b o f)

The function f definesthe sequence of low leveltime points that liebetween each unit

of high leveltime. The correctnessstatement isproved by showing that ifthe intermediate

values of a and b are allowed by Imp, then the values of a and b at the abstracted time

points willbe allowed by Spec.

Itisconvenient to definethe temporal abstraction function in terms of the lower level

time.

a. The time to synchronize the two time sequences can be more easily defined in terms

of the state at the lower level time. For example, the micro and macro levels of a

CPU are linked when the microprogram counter has returned to the beginning of its

fetch-macroinstruction phase.

b. If the correctness statement is expressed in terms of the lower level time, then several

layers of structural and temporal abstraction can be linked together.

c. A proof of a correctness statement will reason at the low level time scale.

We can construct a boolean function which, given a low level time, returns true when

a "map-up" occurs. Using this function p, a function TimeOf can be defined such that

2It is of course, not necessary that there be only one temporal abstraction function in a correctness

statement

16



TimeOf p n denotes the nth time p is true.

If TimeOf is a partial function, it cannot be defined directly in the logic. TimeOf

would be partial if there exists some n after which p is no longer true. Assuming that p

is true at an infinite number of points, TimeOf is total, and f can be as:

Vt. f(t) = Timeof pt or f = TimeOf p

Two useful generic temporal abstraction predicates are First and Next. f can be

defined using these predicates.

hjg Fir,t g t = (Y p:time, p < t =$. _ (g p)) A (g t)

(tl,t2) = ¢11< 12) ^
(V t:time . tl < t A t < t2 ::_ _ (g t)) A (g t2)

First is true when its argument t is the first time that g is true. Next is true when t_

is the next time after tl that g is true. The predicate stable_sigs states that between _1

and t$ the MMU inputs will remain constant.

The definition of f uses Hibert's choice operator e. Given a predicate P, ex.P(x)

represents a value satisfying P.

_ (f g 0 = C t:time. First g t) A
(f g ($UC n) = ¢ t:time, lext g ( (f g n), t))

Other forms of temporal abstraction will be necessary to prove the correctness of

composed devices (see section 4.0).

17



4.0 VERIFYING COMPOSED DEVICES

Hardware verification efforts have not yet investigated horizontal integration of devices.

The aim of this research is to verify a system that presents a top level interpreter describing

a unified system. The top level presents a single processor view of the system while the

implementation consists of many devices working in a cooperative manner. The top level

abstraction conceals a great deal (perhaps all) of any concurrency in the implementation.

The KIT effort characterizes the kind of assertions an operating system verification might

wish to make about an underlying hardware verification and the LOCK SIDEARM serves

as an example architecture which we wish to verify. In addition to a standard instruction

set, the system should provide virtual memory, protected I/O, interrupts (including a timer

interrupt), and security rings. The system must guarantee that a kernel could prevent a

user or process from accessing these features and that executing user processes are isolated

from each other.

Real systems are substantially more complex than the devices currently verified. How-

ever, a useful framework for device verification has been developed from previous efforts to

verify central processing units. The interpreter hierarchy (see figure 3.2-1) demonstrates

how a microprocessor specification can be decomposed into a series of implementing inter-

preters. Intermediate levels describing the phase and microinstruction layers are inserted

between the implementation and top level specifications to facilitate the overall proof

effort. This technique can also be used to verify the correctness of other system compo-

nents. Unfortunately, verification of a system requires more than composition of the top

level specifications.

Top level __specification

Device A

top level

Device B

top level

Middle levels _ Implementation

Middle levels _ Implementation

The increasing abstraction levels make the effort of understanding a specification

significantly easier. However, a substantial amount of information is lost. Much of this

information is necessary to show that devices work together. Systems not only aggregate

18



the function of the individual devices, but also formulate new function. The top level

specification suppresses too much detail which is needed to reason about the composition of

devices. To verify the devices work together will require properties proved about the .joined

intermediate or implementation levels. For example, to show that a system consisting of

a floating point unit, a CPU, and a memory work together correctly, theorems must be

derived to show:

a. The CPU correctly executes CPU instructions.

b. The FPU correctly executes FPU instructions.

c. The devices work together correctly. These devices pass information using a low level

handshaking protocol which would not be described in the top level specifications.

Figure 4.0-1: Composition Lattice

More generally, systems can be modeled as a lattice consisting of specifications and

implementations (see figure 4.0-1). What makes composition interesting is the extent to

which concurrency enters the picture. The models formulated previously were not designed

to handle this concurrency. The interpreter hierarchy model doesn't extend to incorporate

interdevice communication. A system may be decomposed into several subsystems and

devices. Devices can be further decomposed and verified using current techniques such as

the generic interpreter theory. When device specifications are combined, the interpreters

19



must communicate with one another. From the implementation definitions we can derive

the low level protocols used to communicate with other devices and prove that the devices

can synchronize with one another to pass messages. From higher levels we can derive

when these messages would be sent. This would be used to show that two devices employ

a four-phase handshaking protocol when generating memory requests, s

Note that many abstractions based on an implementation are possible. 4 For exam-

ple, the VIPER microprocessor verification effort defined a major state abstraction level

between the top level and the implementation. Cohn chose to abandon the major state

abstraction level as it appeared too difficult to verify it in relation to the top level (ref. 17).

Verification of a system of composed devices can be partitioned into three require-

ments:

a. The top level specification of each device must be correct.

b. Composed interpreters must not violate assumptions made by other interpreters

about shared state.

c. The links between components must be shown to imply the correct synchronous

behavior.

The first requirement can be satisfied by appropriate hierarchical decomposition strate-

gies such as the generic interpreter theory. However, eventual solutions to the other re-

quirements may impose new obligations on device verification that simplify the overall

system proof effort.

SFor a read request, a device using this protocol would: (1) raise the read line and address lines; (2) wait

for dtack to rise and then read the data lines; (3) drop the read line; and (4) wait for dtack to fall and then

drop the address lines.

4This is the reason why the proofs are implicative.

2O



Windley suggests a possible solution to the shared state requirement (ref. 3). Specifica-

tions must describe memory actions with an abstract transformation function. A memory

unit is then defined as:

Fdd MEMORY_UNIT write read memory address port -

(read t _ (port • fetch(memory,address))) A

(write t -* (memory(t+l) = store(memory t, address, port))

I (memory(t+l) = trans (memory t))

If the read signal is true at time t, port carries the value of memory at address.

If the write signal is true at time t, then address of memory is updated with the port

value. Otherwise, the abstract function trans, prescribes whether memory is updated.

The trans function aggregates all changes that are made by other devices during this time

interval.

The shared state problem is put off to a device composition step. The uninterpreted

transformation functions in both devices must then be instantiated with appropriate values.

This proposal requires that a transformation function be specified for every abstraction

level of the device. Additional temporal issues between levels arise as the relationship

between transformation functions of different levels must be described. For example, the

transformation function on the state at the micro level is a composition of the smaller

transformations performed at the phase level. This places a large burdcn on the proof as

the different functions for each level must all be discharged. Windley suggests that some

of the lower levels need not always appear at the lower levels and can be introduced in

the state abstraction function connecting layers (ref. 3). This technique is used in the

specification of A VM- I.

The A VM-1 instruction correctness lemma assumes that, during a memory fetch, no

other device changes the requested location and, during a memory write, devices do not

compete for access to the same memory location. These requirements are too restrictive

when applied at the macro instruction level. It would not be unreasonable for an I/O

device to change its status during a CPU instruction which fetches the status value.

21



We arepursuing an alternative solution which extends the interpreter model notion

of environment. Devicestreat shared locations as part of the environment rather than the

state. The interpreter model does not exhibit an output environment and the treatment

of an input environment can be developed further.

The third requirement involving device synchronization issues is further developed

in the sections which follow. To reason about the communication between devices, the

process algebras CSP and CCS are being considered. CCS appears to be clearer and easier

to implement, however, CSP has recently been mechanized in HOL (ref. 23). Section 4.4.2

presents an example of how CCS may be used to describe device interaction.

Depending on the context, one type of logic is frequently more appropriate than

another to describe some property. By employing several logics together the advantages

of each logic can be utilized. As the different logics will be based in HOL, it is possible

to reason about their combination. Researchers have proposed that several logics can be

effectively expressed in HOL (refs. 2 and 24).

Section 4.2 describes an initial test case which revealed several difficulties in speci-

fying composed systems. Section 4.3 will examine the concurrency introduced by CPU

pipelining. This view can be generalized to reason about prefetch capabilities and a CPU

consisting of several multiple functional units.

To compose devices we construct appropriate temporal and behavioral abstractions.

The final section will present two examples of these abstractions. The first example demon-

strafes the temporal abstraction needed for composing coprocessors. This abstraction is

also applicable to a system with a programmable I/O device such as a DMA. The second

example demonstrates how a CCS notation can be used to describe how devices work

together correctly.

The terms implementing level and abstract level will distinguish between two specifi-

cation levels--one relatively more concrete than the other.

22



4.1 CPU-MMU-MEMORY SYSTEM VERIFICATION

Composing independent processors which share state (e.g., memory, peripheral control

registers) raises difficulties. The proofs for each device make legitimate assumptions about

the effects of device operations. These assumptions simplify the proof and without the full

context in which the device is used, there is little more that the specification can express.

The independent MMU and CPU proofs define memory as providing state which

determines their actions (the segment table and instruction stream, respectively). Verifi-

cation of a processor often requires that its operation affects the state in a deterministic

manner. For example, a CPU will expect a store instruction to change the contents of a

single memory location. The semantics would also suggest that all other memory locations

remain unchanged. When the state is shared, this may not be true.

In user mode, a single write to the segment table pointer register (assuming it's acces-

sible) changes which table is used to construct real addresses from virtual addresses. This

has the effect of changing the (perceived) contents of potentially all memory locations.

This is inconsistent with the CPU's independent proof.

From the perspective of the CPU, the MMU cache is transparent--although memory

accesses are sometimes delayed when the MMU must load a new entry. Both the segment

table pointer register and the segment table(s) are memory locations read (but not modi-

fied) by the MMU. The MMU cache is modified and the behavior of memory is changed,

but there is no mutually modifiable shared state. If the MMU were enhanced to manipu-

late a dirty segment/page bit on processor writes, these two devices would modify shared

state.

The CPU and MMU act in a similar manner to concurrent processes with critical

sections. A critical section is a period of execution when a process must have exclusive

access to some shared resource (ref. 25). In the context of CPU-MMU interactions, a

critical section is entered when either device begins to modify memory. Either low level

hardware or the specification of the paired devices must guarantee that during critical

sections, devices do not interfere.

23



4.2 SAMPLER-CPU

A preliminary analysis of a system combining a sampling I/O device and AVM-1, revealed

several specification and verification issues. The sampling device is hypothetical, but

suggests a simplified keyboard control device.

The sampler interface is through memory-mapped registers (control, status, data).

The control register may be set so that the sampler is inactive, polled, or interrupt enabled.

If the control register is programmed to accept new inputs, an arriving sample is placed

in the data register. The status register reflects whether a value is available in the data

register or if an error has occurred and is reset whenever the control register value is

modified. It is the responsibility of the software (or CPU microcode) to initialize, fetch

and reset the sampler appropriately.

The system specification extends the AVM-1 instruction set to include a new "in-

struction" (an operating system trap) which retrieves a new sample value from the input

environment. 5 When the sample trap is serviced, the CPU switches to supervisor mode

(allowing access to I/O space) and a short assembly language program executes and re-

turns (in user mode) with the new sampler value in some register. We can denote this

behavior as:

instruction t =TRAP, ampze_ ==_ regi(t + 1) = sample t

The communication is performed at a finer grain of time than the top level specifi-

cation. There is a delay between when the assembler routine starts and when a sample

is retrieved. Figure 4.2-1 shows an example where the above expressed semantics are not

satisfied. The sample arrives after t, but before the assembler program requests a value.

To resolve this problem, we can redefine the sampler. The new sampler would store

a sample value in a latch each time the CPU began an execution cycle. This value would

be written to the data register only when the appropriate trap instruction executes. This

6In the multilevel machine structure described by Tanenbaum, this new interpreter is a subset of the

operating system machine level--above the conventional machine level and below the assembly language

level (ref. 26).

24



sample sample

I ' ' II i

i !

t arrives retrieved t+l

Figure 4.2-1: Sampling Time Granularity

simpler unit is certainly not realistic and we would like to verify the composition of the

original device. This example motivated the work described in section 4.4.

4.3 PIPELINES

Figure 4.3-1 shows the behavioral abstraction utilized in the verification of the Mini Cayuga

pipeline. Mini Cayuga is a three stage instruction pipelined RISC processor (ref. 27).

Instructions pass through fetch, compute and writeback pipeline stages. The top line

presents the abstracted view while the bottom line presents the implementing level view.

At to, tl, and t2 instructions enter the pipeline.

abstract level

a b c

0 ....... 0 ....... 0----_0_0 ....... 0-----0 ....... 0
,A A, ,A
i l I

l l i

i i I

l i I

0..--.._0--...,. 0 --...._ 0 _.-_ 0.---,,.0.---..0.-....... 0
to tl t2 t3 t4 t5 t6 tr

implementing level

Figure _.3-1: Temporal Abstraction for Mini Cayuga Pipeline

The abstract level specification declares that the effect of an instruction occurs com-

pletely in the last stage of the pipeline when values are written back to the register file.

These points are labeled a,b and c. The processor is described as doing work only during

an interval when some instruction is in its last stage. During other periods, the CPU is

considered idle. The number of cycles needed to complete an instruction varies from one

instruction to another. When a memory fetch is required, the pipeline stalls until the fetch

has completed (e.g., at t4).

25



Rather than collapse these idle periods into work periods, the Mini Cayuga verification

retains these periods. This appears to have been done so that the top level specification

can describe the delayed branching effect caused by pipelining. If branching instructions

were defined semantically as "jump after the next instruction," it would be unnecessary

to describe the prefetch behavior at the abstract level.

This effort contrasts with the work described below. We collapse these idle periods

and define significant events as the point where a new instruction is begun.

4.4 COPROCESSORS

A coprocessor is a device which shares the task of executing instructions with the CPU.

Coprocessors may also provide additional functionality to the system (e.g., a memory

management unit) or may only extend the system's instruction set (e.g., a floating point

coprocessor). When coprocessors are present, the CPU continues to fetch all instructions,

but defers to the coprocessor to execute certain instructions. The CPU may explicitly

route instructions to the coprocessor (e.g., 68020, 80387) or the coprocessor may fetch

instructions directly from the CPU instruction stream (e.g., 8087). These cases may be

classified as "snooping" or "nonsnooping" respectively. In either case, the abstraction

presented to the user is a unified system--that instruction execution is performed by two

distinct units is hidden. The abstraction conceals the complex synchronization which

occurs between the CPU and its coprocessors.

Some coprocessor instructions may be treated as no-ops by the CPU while others

may require work by both the coprocessor and the CPU. The CPU may be required to

calculate memory addresses, initiate memory operations, transfer register values or respond

to a coprocessor's status flags. In the "nonsnooping" case, the CPU must also send the

instruction to the coprocessor. Many of these functions could be added to the coprocessor.

However, as the CPU independently requires these functional capabilities to operate, it is

more space efficient not to duplicate these functions.

The CPU controls instruction sequencing and, thus, must monitor the coprocessor

to synchronize actions before moving onto the next instruction. Synchronization can be

26



achievedby the CPU either polling a coprocessor status register or reading a busy-line.

The amount of work the CPU must perform for most coprocessor instructions is

quite small compared to the work the coprocessor performs to execute an instruction.

This leaves the CPU idle for a potentially long period if the CPU must wait for the

coprocessor to complete its task. Frequently, a significant number of instructions can be

inserted between instructions destined for the same coprocessor. To enhance performance,

modern coprocessor designs permit the CPU to execute instructions in parallel with the

coprocessor. Either hardware or software must ensure that the concurrent instructions do

not interfere with one another. The presence of instruction prefetch or CPU on-chip caches

add significant complications. This will be discussed in greater detail below.

4.4.1 68000 COPROCESSORS

This example demonstrates a useful temporal abstraction method which supports the

composition of devices.

The Motorola 68000 supports a general interface for coprocessors to receive instruc-

tions from the CPU (ref. 28). Functionality is divided so that the CPU does not have

to decode coprocessor instructions and the coprocessors do not duplicate CPU functions

such as address calculations.

Each coprocessor is expected to provide a set of registers (mapped to memory loca-

tions) which are used for communication. _ The coprocessor interface includes command,

response, condition, and operand registers. When the CPU fetches a coprocessor instruc-

tion, a dialogue with the appropriate coprocessor begins. The CPU writes the instruction

to the command CIR register for the coprocessor to decode. The CPU then busy-waits;

checking the response CIR until the coprocessor indicates either:

a. it is free to execute the next instruction.

b. an operand read or write is required.

c. or an exception has occurred.

_These registers are not directly available to the programmer.

27



While the coprocessorinterface is generic,in the following discussion,wewill describe

the interaction with a floating point coprocessor(FPU). The description would equally ap-

ply to the memory managementunit (MC68851). The MC68851normally doesnot allow

concurrent instruction processingsincemost MMU instructions changethe systemconfig-

uration. However,the coprocessordialoguewill take placeasthe MC68851may requestan

effectiveaddresscalculation. It is alsopossiblethat an exceptionwill be generatedduring

the coprocessordialogue (e.g.,a pagefault).

Once communication is completed, the CPU is free to execute the next instruction.

The coprocessormay continue to execute on its own while the CPU executesthe next

instruction. Coprocessorinstructions can take much longer to complete than CPU in-

struction. For examplea floating point coprocessorinstruction may require the equivalent

of severalCPU instruction cyclesto complete. Thus, severalinstructions may beexecuted

concurrently. The parallelism may not be presented to the programmer who views the

system as executing instructions sequentially. This introduces an interesting verification

problem. The verification effort must showthat the concurrent implementation can imply

a sequentialexecution abstraction.

To ensurethe correct execution of an instruction stream, somemechanismmust be

in placeto ensurenoninterference. If the CPU continuesto executeinstructions after the

floating point unit has begun execution, the CPU must not referencea memory location

specifiedin the floating point instruction. Also, assuming the floating point coprocessor

canexecuteonly one instruction at a time, the CPU must not initiate the execution of a

secondfloating point instruction until the first hascompleted.

The CPU must ensurethat the instruction stream doesnot interfere with itself. While

this abstraction may seema bit contrived, propagating the concurrency to the top level

increasesthe difficulty of proving programs correct.

The abstraction presentedcan be extended to describeother situations:

a. A system with programmableI/O processorsor a DMA device.

b. A CPU with multiple functional units where instructions are scheduledon several

different computation units and executein parallel.

28



c. A multiprocessor systemwherea task is divided into severalparallel communicating

subtasks.

4.4.1.1 The System Level Abstraction

With the inclusion of a floating point coprocessor, the system provides an instruction set

which contains both the CPU instruction set as well as the FPU instruction set. The

register set available contains all CPU and FPU registers. At the abstraction level of the

programmer, the system appears as a single unit. The programmer need not be aware

that there are two distinct devices sharing the task of executing instructions. Further,

at this level of abstraction, instructions appear to be executed in a sequential manner.

That is, the programmer may believe that instruction i + 1 does not begin executing until

instruction i has completed.

In the underlying implementation, however, the CPU may initiate the execution of

a floating point instruction and then begin execution of the next instruction before the

floating point unit has finished. In fact, if the floating point instruction is followed by a

sequence of instructions which do not require either the FPU or the result of the initial

floating point instruction, several of the instructions may complete before the FPU in-

struction calculates a result. This parallel execution of instructions utilizes the CPU and

FPU more efficiently than the abstract specification required.

4.4.1.2 Noninterference

The CPU and FPU can interfere with one another if either:

a. The CPU initiates execution of an FPU instruction when the FPU is busy executing

a previous instruction.

b. The CPU attempts to read or write to the target memory location of the currently

executing FPU instruction.

29



When the 68020detectsa coprocessorinstruction, it initiates a coprocessordialogue.

If the coprocessor is already executing an instruction, the coprocessor will not complete the

dialogue, causing the CPU to idle. When the coprocessor becomes free, synchronization

can complete and the CPU will proceed to the fetch and execute the next instruction. This

enforces the requirement that the CPU not initiate the execution of a second coprocessor

instruction prematurely.

If the target of an FPU operation is a memory location, the second interference prob-

Iem remains only if the CPU is released before the result is stored. The implementation

does not complete the coprocessor dialogue until the result is stored. Note that the memory

management coprocessor will not release the CPU until after a state change has completed.

Thus, the second potential interference problem is not present.

4.4.1.3 Verification

To prove the CPU-FPU system implements the system level abstraction, we must show

that:

a. The independent processors work as specified.

b. The low level synchronization and message passing works correctly.

c. The devices don't interfere with one another.

The verification of the independent processors can be achieved in a manner similar

to previous efforts. Passing information between memory locations or devices can be

performed using a four-phase handshaking protocol as described in (ref. 29). With the

exception of memory, the CPU and FPU do not share state. Memory is only changed

when both the CPU and FPU cooperate to pass a value. The CPU top level interpreter is

invalid only if memory were to change at a time the CPU cannot predict.

At the programmer abstraction level, each instruction completes before the subse-

quent instruction begins. However, the execution of a single coprocessor operation may

be overlapped with the parallel execution of several CPU instructions. This contradicts

3O



the interpreter model. The interpreter model describes the resulting state based on the

execution of a single instruction. This view presents an interpreter where the state at t + 1

modifies the user visible state only as permitted by the instruction selected at t.

4.4.1.4 Concurrent to Sequential Abstraction

When the devices are composed together, the composite interpreter displays concurrency.

However, given the noninterference property described above, this concurrency is an im-

plementation detail which can be abstracted away from the programmer level. This is

unlike the 8086/8087 composition where the programmer must insert guard instructions

to ensure the noninterference (see section 4.4.2).

To demonstrate the abstraction technique, we will use the following possible execution

sequence of instructions:

fl, Cl, C2, C3, f2

Each fi is a FPU instruction and each c, is a CPU instruction. This sequence generalizes

to any sequence beginning with a floating point instruction, continuing with one or more

CPU instructions and followed by a floating point operation. Instructions which transfer

values from floating point registers to memory or CPU registers are classified as floating

point instructions.

Figure 4.4-1 shows the independent instruction streams and the joint instruction

stream at the implementing (concurrent) level. "Clock" ticks denote the points when

new instructions begin to execute. It is at these clock tick times when we can describe the

state of the machine. Each instruction is labeled by a start time (ci) and a completion

time (ci). Several possible state histories exist depending on when ]'1 completes execution.

At tl, the CPU fetches fl and begins a coprocessor dialogue (we ignore the delay

between the fetch and initiation of the dialogue). The coprocessor does not release the

CPU until t2, when the dialogue has completed, at which point the CPU fetches c_. fl

31



CI

I

(a) CPU Instruction Execution

C 2 C3

I I I

(b) FPU Instruction Execution

A

l I

(c) Joint Instruction Execution

fl Cl c2 c3 f_

tz t: t3 t4 ts te

Figure ,l.,t-I: CPU and FPU Concurrent Instruction Execution

may finish anywhere between tx and t6 (see figure 4.4-1c). At ts, ca has completed and

the CPU fetches f2- The coprocessor dialogue begins, but the coprocessor will not be

ready to execute fa until completing execution of fl (perhaps at t6). Any time the CPU

(or coprocessor) must wait can be collapsed into the previous instruction execution cycle.

Thus, ts can be omitted with c3 "finishing" at t6.

At the higher programmer (sequential) abstraction level, the state consists of the CPU

state, the FPU state, and the shared memory state. The coprocessor cannot modify the

shared memory state without the assistance of the CPU. Thus, memory can be treated as

part of the CPU state. The implementation guarantees that the states of the two devices

are distinct. The CPU is not able to modify the FPU state nor is the FPU able to modify

the FPU state.

32



Fo

I I I I I I
Co Ca Co Co Yl
tl t2 t3 t4 t5 t6

Figure 1._-& CPU and FPU States

In figure 4.4-2, Ci and F/ represent the CPU state and FPU state after instruction

i. Figure 4.4-2 exhibits the distinct states relative to the time scale of figure 4.4-1. At ta

the CPU is in state Co while the FPU is in state F0. At the implementing level, we can

construct a state pair history which represents the actual state at the indexed points:

Co Ca CO C3 CO

Fo Fo Fo Fo F_

Abstractly we want the tuple history to reflect the sequence of instructions executed:

Co Co Ca CO C3

Fo F_ F_ F_ Fx

The dialogue implementation guarantees that the CPU (and programmer) can not

observe any FPU state change until it has completed, r It doesn't matter when the instruc-

tion actually completed, so the abstract view suggests it completed immediately after the

coprocessor dialogue. The sequential top level interpreter then chooses to update the state

pair based on whether the next instruction is a CPU or coprocessor instruction.

7The Paul Mason principle: "We will see no state until its time."

33



4.4.2 8087 COPROCESSOR

The interaction between the Intel 8086/8, the 8087 floating point coprocessor and other

support chips demonstrates the complex communication which occurs between devices

(ref. 30). In this section we will describe the communication between devices and describe

a set of CCS agent,_ which reflect the communication essential for correct system behavior.

Appendix B presents a brief overview of CCS inference rules and expression construction.

The Intel 8086/8 instruction set contains several instructions for coprocessor support.

The ESC instruction includes a coprocessor opCode field which is ignored by the 8086/8.

The CPU may perform some work depending on the other fields. The CPU. may calcu-

late operand addresses and initiate memory fetches and stores. If multiple word memory

operations are required, the coprocessor initiates subsequent transfers where the address

calculation amounts to an increment operation.

To maximize concurrency, FPU and CPU instructions may be overlapped. The FPU

must complete execution of each instruction before starting a new instruction. The pro-

gram is obligated to synchronize the CPU and FPU. A WAIT instruction can be inserted

between floating point operations to force the CPU to wait until a busy line is low. Rather

than receiving its instructions from the CPU, the 8087 monitors all information passing

to the 8086 (or 8088) CPU and selects instructions from the bus. For the two devices to

work together correctly, they must coordinate several details:

a. 8086 or 8088 interface.

b. Instruction tracking.

c. Bus control.

d. Processor synchronization.

e. Exceptions.

34



4.4.2.1 8086 or 8088 Interface

The 8087 was designed to work with either the 16-bit data bus 8086 or the 8-bit data

bus 8088. The 8087 detects which of the two processors is present at startup time. Upon

system initialization, the RESET line becomes high and the CPU fetches a value from

memory location FFFFOH. An 8086 will set BHE low while the 8088 will set the output from

the same pin (labeled S--_) high. By observing the RESET and B-_/S-'S-6 lines, the 8087 can

determine which CPU is present (see figure 4.4-3). These requirements can be modelled

using the following CCS expressions:

8087 =_q reset.Reset87 + ...

Reset87 =d,/hiBHE.86Interface + lowBHE.88Interface

8086 =dr/ rese$.7_-B-_.Reset86 + ...

8086/88

RESET

Qso Qsl

11 [
OSO {_SI BUSY

; /D-TO

8087

RESET

Figure 4._-3: 8086/8 - 8087 Interface

35



4.4.2.2 Instruction tracking.

Many coprocessor instructions require that both processors perform portions of the work

simultaneously. The two processors execute based on the same clock signal from an 8284

clock generator. The 8087 monitors all bus traffic to the CPU and must respond correctly

when the CPU executes its part of the coprocessor instruction. The 8086/8 CPU prefetch

mechanism and variable length instruction format complicate the synchronization.

Free bus cycles are used to fetch instruction stream bytes into a CPU resident queue.

Runtime control flow behavior will determine whether these bytes are interpreted as in-

structions. Without duplication of the CPU decode and execution logic, the 8087 cannot

directly determine which fetched bytes are instructions and which are operands. Finding

ESC instructions is not straightforward and the 8087 has no way to (internally) determine

exactly when the CPU will begin executing a coprocessor instruction.

Three lines from the CPU to the 8288 bus controller (S0, $1, $2) are monitored by the

8087 and allow the 8087 to distinguish instruction fetches from other memory operations

(see figure 4.4-4).

To coordinate instruction tracking, the 8087 maintains a copy of the instruction queue

and duplicates buffer management functions. The CPU informs the coprocessor of how

the CPU instruction buffer is used using the QS0 and QS1 lines as described in table 4.4-1.

Table _._-I: Abstract Level State Pair History

QSO QSl Condition

No signal No signal No queue change

No signal Signal Remove first byte and

Interpret as instruction

Signal No signal Flush queue

Signal Signal Remove first byte

These requirements are partially modelled using the CCS expressions:

8086 =_,! 86Prefetch [86Decode

36



Clock

CLK

Int controller

IR

I I

I d

I

!

I

!

i
I

CLK

8086

INTK

CLK

8O87

INT --

L Bus controller

CLK

ro
r_

Figure 4.4"4:8086/8 System

86Prefetch =_,! fetchCode.GetCode

86Decode =d4 noChange.86Buf + decode.86Buf + _.86Buf + $kipByte.86Buf

4.4.2.3 Bus Control

When the 8087 requires additional bus cycles to fetch/store multiple byte memory operands,

the 8087 must request bus control from the CPU. Using the R-0/G-"_ line, the 8087 first

makes the request, waits for a grant acknowledgment from the CPU, and issues a done

acknowledgement after completing its bus activity. These requirements are partially mod-

elled using the CCS expressions:

87NeedBus =dd bu$Req.busGrant.UseBus.busDone

8086 =d4 -.. + busReq.bu_Grant.busDone.8086

37



4.4.2.4 Processor Synchronization

When the CPU executes a WAIT instruction, it monitors its _ pin until the value is

low. This pin is connected to the 8087 BUSY pin which remains high while a coprocessor

instruction executes.

8086 =_d .'- + waitInstr.notBu_y.8086

87Busy =d,! setBusy._e_Idle.87Busy + notBu_y.87Busy

4.4.2.5 Exceptions

Normally the 8087 handles its own exceptions. The 8087 may be programmed to instead

assert its interrupt pin. This pin is typically connected to a 8259A interrupt-controller

which may pass the exception on to the interrupt controller.

PICidle =_4 _=o in_Req,.IRi

IRi =ae! intR.ForwardIRi

8086 =dd .-. + intR.GetIReq

87Except =d4 intReq6.8087

38



5.0 SUMMARY OF APPROACH

As a preliminary step, we will verify a system consisting of a simple sampling device and a

CPU. The sampling device will provide both polling and interrupt-driven I/O interactions.

This will provide a mechanism to examine various communication interactions (rendezvous,

remote procedure call, message passing). This example will also validate our proposed

approach to verifying composed devices.

We will then investigate what is required to verify the composition of the verified

MMU with an MMU cache. The verified MMU is inefficient as it must fetch a segment

descriptor for each memory request. An initial design of a first-in-first-out (FIFO) list has

been specified and designed. A more appropriate specification is being developed which

describes the cache as a finite set rather than a list. The FIFO replacement strategy will

be replaced with an least recently used or most frequently used replacement scheme. The

ability to "lock" values into the cache may also be added.

Both the MMU and the cache will be defined as interpreters. From these interpreters,

CCS device communication behaviors will be extracted. The composed abstract specifica-

tion will show that the MMU subsystem is equivalent in behavior to a system without the

cache and performs at least as efficiently.

Extending this example, we plan to demonstrate how a complete system composed of

many devices can be shown to correctly implement an abstract system specification.

39



6.0 CONCLUSIONS

Current hardware verification methodologies do not adequately address the demands im-

posed by composed systems (shared state, time granularity and synchronization specifica-

tion).

L Devices treat state as a monolithic unit and assume complete control over its al-

teration. The state shared by composed devices does not behave as stipulated. To

verify composed devices, we must define a composed view of shared state and show

that devices don't simultaneously modify their shared state (memory). We propose

extending the use of environments. The generic interpreter theory provides a limited

output environment and does not utilize its input environment. We are investigating

three alternative approaches: 1) Treat all of memory as part of the environment;

2) Define memory state as undefined at certain points; 3) Construct an abstraction

allowing memory to "float between being part of state and part of the environment.

b. A new temporal abstraction mechanism has been designed to allow a sequential top

level abstraction for a concurrent implementation.

c. To specify multiple device behavior dependencies we propose using CCS to specify

the requirements for each device. Each device (interpreter) must be shown to imply

the required behavior and the combined behavior must be shown to imply the top

level specification.

The generic interpreter model is not sufficiently flexible to meet the composition re-

quirements. The proposed transformation function does not seem to be adequate to resolve

the shared state problem. Extending the generic interpreter model theory (ref. 3) to uti-

lize an input mad output environment gives promise of solving this problem. By adding a

complementary method to the interpreter theory, we hope to create a methodology that

takes advantage of the generic interpreter theory and solves the device synchronization

verification problem. Rather than devise a new concurrency theory, we are investigating

the integration of CCS with the interpreter theory.

4O



By adding a complementary method to the interpreter theory, we will create a method-

ology that takes advantage of the generic interpreter theory and solves the device syn-

chronization verification problem. Rather than devise a new concurrency theory, we are

pursuing the integration of CCS with the interpreter theory.

41



REFERENCES

1. W. R. Bevier, W. A. Hunt, and W. D. Young, "Toward Verified Execution Environ-

ments," IEEE Symposium on Security and Privacy, 1987.

2. J. J. Joyce, Multi-Level Verification of Microprocessor-Based Systems. PhD thesis,

Cambridge University, December 1989.

3. P. J. WincUey, The Formal Verification of Generic Interpreters. PhD thesis, University

of California, Davis, 1990.

4. K. Fitzgerald, "Vulnerability exposed in AT&T's 9-hour glitch," The Institute, March

1990.

5. A. D. Singh and S. Murugesan, "Fault-Tolerant Systems," Computer, July 1990.

6. J. L. Turley, Advanced 80386 Programming Techniques. Osborne McGraw-Hill, 1988.

7. V. P. Nelson, "Fault-Tolerant Computing: Fundamental Concepts," Computer, July

1990.

8. M. Glasser, Building A Secure Computer. Van Nostrand Reinhold Company, 1988.

9. D. Denning, Cryptography and Data Security. Addision-Wesley, 1982.

10. V. D. Gilgor, "Analysis of the Hardware Verification of the Honeywell SCOMP," IEEE

Symposium an Research in Security and Privacy, 1985.

11. J.D. Guttman and H. Ko, "Verifying A Hardware Security Architecture," IEEE Sym-

posium on Research in Security and Privacy, 1990.

12. P. G. Neumann, "On Hierarchical Design of Computer Systems for Critical Appli-

cations," IEEE Transaction on Software Engineering, vol. SE-12, No. 9, September

1986.

13. A. Colin, "A Proof of Correctness of the VIPER Microprocessor: the First Level," in

VLSI Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,

eds.), Kluwer Academic Press, 1988.

42



14. W. A. Hunt, "A Verified Microprocessor," technical report 47, The University of Texas

at Austin, Dec. 1985.

15. W. A. Hunt, "Microprocessor Design Verification," Journal of Automated Reasoning,

vol. 5, 1989.

16. W. J. Cullyer, "Implementing Safety Critical Systems: The VIPER Microproces-

sor," in VLSI Specification, Verification, and Synthesis, (G. Birtwhistle and P. Sub-

rahmanyam, eds.), Kluwer Academic Press, 1988.

17. A. Cohn, "A Proof of Correctness of the VIPER Microprocessor: the Second

Level," in Current Trends in Hardware Verification and Automated Theorem Prov-

ing, (G. Birtwhistle and P. Subrahmanyam, eds.), Springer-Verlag, 1989.

18. J. J. ,loyce, "Totally Verified Systems: Linking Verified Software to Verified Hardware,"

Hardware Specification, Verification and Synthesis: Mathematical Aspects, July 1989.

19. E. T. Schubert, "Verification of Memory Management Units using HOL," technical

report CSE-90-27, University of California, Davis, August 1990.

20. T. Melham, "Abstraction Mechanisms for Hardware Verification," in VLSI Specifica-

tion, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam, eds.), Kluwer

Academic Press, 1988.

21. E. W. Dijkstra, "The Structure of THE,--Multiprogramming System," Communica-

tions of the ACM, vol. 11, May 1968.

22. P. J. Windley, "A Hierarchical Methodology for Verifying Microprogrammed Micro-

processors," IEEE Symposium on Research in Security and Privacy, 1990.

23. A. J. Camilleri, "Mechanizing CSP Trace Theory in Higher Order Logic," IEEE Trans-

actions on Software Engineering, vol. 16, September 1990.

24. M. Gordon, "Mechanizing Programming Logics in Higher Order Logic," in Curren¢

Trends in Hardware Verification and Automated Theorem Proving, (G. Birtwhistle

and P. Subrahmanyam, eds.), Springer-Verlag, 1989.

43



25. G. R. Andrews and F. B. Schneider, "Concepts and Notations for Concurrent Pro-

gramming," Computing Surveys, vol. 15, March 1983.

26. A. S. Tanenbaum, Structured Computer Organization. Prentice Hall, 1976.

27. M. Srivas and M. Bickford, "Formal Verfication of a Pipelined Microprocessor," IEEE

Software, vol. 7, September 1990.

28. Motorola, MC 68851 Paged Memory Management Unit User's Manual. Prentice Hall,

1986.

29. J. Joyce, "Formal Specification and Verification of Asynchronous Processes in Higher-

Order Logic," technical report, University of Cambridge, Computer Laboratory, 1988.

30. J. F. Palmer and S. P. Morse, The 8087 Primer. John Wiley _: Sons, 1989.

31. M. Gordon, "HOL: A Proof Generating System for Higher-Order Logic," in VLSI

Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam, eds.),

Kluwer Academic Press, 1988.

32. A. Camilleri, M. Gordon, and T. Melham, "Hardware Verification using Higher Order

Logic," in From HDL Descriptions to Guaranteed Correct Circui_ Designs, (D. Bor-

rione, ed.), Elsevier Scientific Publishers, 1987.

33. A. Church, "A Formulation of the Simple Theory of Types," Journal of Symbolic Logic,

vol. 5, 1940.

34. M. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF. Lecture Notes in Computer

Science No. 78, Springer Verlag, 1979.

35. R. L. Constable, Implementing Mathematics with the NUPRL Proof Development Sys-

tem. Prentice Hall, 1986.

36. R. Milner, Communication and Concurrency. Prentice Hall, 1989.

44



APPENDIX A" HOL

HOL is a general theorem proving system developed at the University of Cambridge

(refs. 31 and 32) that is based on Church's theory of simple types, or higher order

logic (ref. 33). Church developed higher order logic as a foundation for mathematics,

but it can be used for describing and reasoning about computational systems of all kinds.

Higher order logic is similar to the more familiar predicate logic, but allows quantifica-

tion over predicates and functions, not just variables, allowing more general systems to be

described.

HOL grew out of Robin Milner's LCF theorem prover (ref. 34) and is similar to other

LCF progeny such as NUPRL (ref. 35). Because HOL is the theorem proving environment

used in the body of this work, we will describe it in more detail.

HOL's proof style can be tailored to the individual user, but most users find it conve-

nient to work in a goal-directed fashion. HOL is a tactic based theorem prover. A tactic

breaks a goal into one or more subgoals and provides a justification for the goal reduction

in the form of an inference rule. Tactics perform tasks such as induction, rewriting, and

case analysis. At the same time, HOL allows forward inference and many proofs are a

combination of both forward and backward proof styles. Any theorem proving strategy a

user employs in connection with HOL is checked for soundness, eliminating the possibility

of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem

prover. Using ML, tactics can be put together to form more powerful tactics, new tac-

tics can be written, and theorems can be combined into new theories for later use. The

metalanguage makes the HOL verification system extremely flexible.

In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application

of inference rules. Most nontrivial proofs require large numbers of inferences. Proofs of

large devices such as microprocessors can take many millions of inference steps. In a proof

containing millions of steps, what kind of confidence do we have that the proof is correct?

One of the most important features of HOL is that it is secure, meaning that new theorems

can only be created in a controlled manner. HOL is based on five primitive axioms and

45



eight primitive inference rules. All high-level inference rules and tactics do their work

through some combination of the primitive inference rules. Because the entire proof can

be reduced to one using only eight primitive inference rules and five primitive axioms, an

independent proof-checking program could check the proof syntactically.

A.1 The Language.

The object language of HOL is described in this section. We will discuss HOL's terms and

types.

Terms. All HOL expressions are made up of terms. There are four kinds of terms in

HOL: variables, constants, function applications, and abstractions (lambda expressions).

Variables and constants are denoted by any sequence Of letters, digits, underlines, and

primes starting with a letter. Constants are distinguished in the logic; any identifier that

is not a distinguished constant is taken to be a variable. Constants and variables can have

any finite arity, not just 0, and, thus ,can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus,

a term of the form "151 t2" is an application of the operator 1;1 to the operand t2. The

term's value is the result of applying 151 to t2.

An abstraction denotes a function and has the form "A x. t". An abstraction

"A x. t" has two parts: the bound variable x and the body of the abstraction t. It

represents a function, f, such that "f(x) = 15". For example, "A y. 2*y" denotes a func-

tion on numbers which doubles its argument.

Constants can belong to two special syntactic classes. Constants of arity 2 can be

declared to be infix. Infix operators are written "remdl op rand2" instead of in the usual

prefix form: "op randl rtmd2". Table A-1 shows several of HOL's built-in infix operators.

Constants can also belong to another special class called binders. A familiar example

of a binder is V. If c is a binder, then the term "c x .t" (where x is a variable) is written as

shorthand for the term "c(A x. t)". Table A-2 shows several of HOL's built-in binders.

46



Table A-l: HOL Infiz Operators

Operator

m

A

V

=::$,

Application

tl = t2

tl,t2

tl h t2

tl V t2

tl _ t2

Meaning

tl equals t2

the pair tl and t2

tl and t2

tl or t2

tl implies t2

Table A-B: HOL Binders

Binder

V

3

C

Application

Vx.t

3x.t

gx.t

Meaning

for all x, t

there exists an x such that t

choose an x such that t iS true

In addition to the infix constants and binders, HOL has a conditional statement that

is written a -* b [ c, meaning "if a, then b, else c."

Types. HOL is strongly typed to avoid Russell's paradox and others like it. Russell's

paradox occurs in a high order logic when one can define a predicate that leads to a

contradiction. Specifically, suppose that we define P as P(x)

negation. P is true when its argument applied to itself is false.

to a contradiction since P(P) ,, -,P(P) (i.e. , true = false).

be prevented by typing since, in a typed system, the type of P would never allow it to be

applied to itself.

Every term in HOL is typed according to the following recursive rules:

= -_x (x) where -_ denotes

Applying P to itself leads

This kind of paradox can

a. Each constant or variable has a fixed type.

b. If x has type a and t has type f_, the abstraction A x. t has the type (a --* fl).

c. If t has the type (a -* fl) and u has the type a, the application t u has the type ft.

Types in HOL are built from type variables and type operators. Type variables are

denoted by a sequence of asterisks (*) followed by a (possibly empty) sequcnce of letters

47



Table A-3: ttOL Type Operator_

I
Operator Arity Meaning

bool 0 booleans

ind 0 individuals

aura 0 natural numbers

(*)list 1 lists of type *

(*,**)prod 2 products of * and **

(*,**)sum 2 coproducts of* and **

(*,**)fun 2 functions from * to **

and digits. Thus, *, ***, and *ab2 are all valid type variables. All type variables are

universally quantified implicitly, yielding type polymorphic expressions.

Type operators construct new types from existing types. Each type operator has a

name (denoted by a sequence of letters and digits beginning with a letter) and an arity.

If a,,...,a, are types and op is a type operator of arity n, the (al,... ,a,)op is a type.

Note that type operators are postfix while normal function application is prefix or infix.

A type operator of arity 0 is a type constant.

HOL has several built-in types which are listed in table A-3. The type operators

boo1, ind, and fun are primitive. HOL has a special syntax that allows (*,**)prod to be

written as (* # **), (*,**)sum to be written as (* + **), and (*,**)fun to be written

as (* -> **).

A.2 The Proof System.

HOL is not an automated theorem prover but is more than simply a proof checker, falling

somewhere between these two extremes. HOL has several features that contribute to its

use as a verification environment:

a. Several built-in theories, including booleans, individuals, numbers, products, sums,

lists, and trees. These theories contain the five axioms that form the basis of higher

order logic as well as a large number of theorems that follow from them.

48



b. Rulesof inference for higher order logic. These rules contain not only the eight basic

rules of inference from higher order logic, but also a large body of derived inference

rules that allow proofs to proceed using larger steps. The HOL system has rules that

implement the standard introduction and elimination rules for Predicate Calculus as

well as specialized rules for rewriting terms.

c. A collection of tactics. Examples of tactics include: I_W_ITE_TAC which rewrites

a goal according to some previously proven theorem or definition; 6EN_TAC which

removes unnecessary universally quantified variables from the front of terms; and

EQ_TAC which says that to show two things are equivalent, we should show that they

imply each other.

d. A proof management system that keeps track of the state of an interactire proof

session.

e. A metalanguage, ML, for programming and extending the theorem prover. Using

the metalanguage, tactics can be put together to form more powerful tactics, new

tactics can be written, and theorems can be aggregated to form new theories for later

use. The metalanguage makes the verification system extremely flexibIe.

49



APPENDIX B: Calculus of Communicating Systems

CCS was designed to model communication and concurrency in complex systems (ref. 36).

Systems are composed of several parts acting independently of each other, but communi-

cating with one another to achieve a mutual goal. All elements of the system are modeled

as agent,,. The medium used to transmit information between a sender and receiver is

also modeled as an agent. An agent's behavior is described by actions which may be com-

munications with other agents or independent concurrent actions. Milner suggests that

independent actions can also be modeled as (internal) communication.

The calculus provides five primitives to construct expressions describing agents' be-

havior: Prefix, Summation, Composition, Restriction and Relabelllng. s In the

pure calculus, agents do not transmit data values, but synchronize through indivisible

actions where a synchronization signal is simultaneously sent by one party and received

by another. The summation 'operator' can be applied to duplicate the effect of passing

data values between agents. By communicating only through pure synchronizations, the

calculus may ignore value variables.

An agent identifies the current state of an entity. Transitions from state to state are

accomplished by an action. Actions are denoted by labels and describe either synchro-

nization or internal transitions. Labels are taken from an infinite set of names. For two

components to synchronize, they must share the same port name. The notation distin-

guishes send and receive synchronization labels by placing a bar over the name of send

labels (e.g., E). Internal transitions are labeled by the reserved label r which has no

complement.

For example, in the figure below, agent A has an input synchronization port (in) and

an output synchronization port (o--_).

SRestriction and relabelling operators have the tightest binding followed by prefix, composition, and

summation.

5O



The behavior of the agent might be definedas follows:

Theseagents describea semaphoreand show the useof the Prefix ( "." ) operator.

Agent A waits to synchronize with some other agent and upon completion, behaves as A r.

Composition hooks together two independent agents and is denoted with a vertical

bar. For example, consider the following agents:

The composite agent (A ] B) may be connected as follows:

6

We can also write A --_4 a.A' as A --% A'. The transitional semantics of the language

(described below) allow us to infer the following:

a. From A -_ A', we infer A I B _ A' I B.

b. From A' -_ A, we infer A' [ B -_ A [ B (this represents communication between A'

and some agent other than B).

c. Since A' _ A and 13 _ B' we can infer A'113 -h A I B' (internal transitions).

d. From B r -,_ B, we infer A IB' L A IB.

51



By imposing Restriction on the composition of A and B (i.e., A [ B\c), the action c is

no longer externally available. This implies item (2) would then be excluded.

In the above examples, each agent was defined as conducting only one action. The

Summation operator (+) is used to define agents which may make one of several (possibly

infinite) transitions. For example, an agent similar to A could be defined to either accept

input signals or send output signals as follows:

C =d4 a.C +'_.C

Relabelling allows agent definitions to be reused. Using relabelling we could use the

same agent definition for A and B above. Given a relabelling function f, A[f] denotes a

copy of agent A with appropriately modified action names.

B.1 transitional semantics

CCS provides several rules describing the semantics of the expression constructors:

Act

Sumj

COral

Corn2

Com_

a.E .._ E

° i)

E -_ E'

EIF_E'IF

F -% F'

EIF-% EIF'

E .L, E' and F _ F'

E[F-.h E'[F'

52



aes

Rel

Con

E-_ E'

E\L -.% E'\L (a,_ _ L)

E -_ E'

E[f] :_} E'[f]

P _, p, p)
A -_ P-U_(A =d,l

53



I. No
187504

NASA CR

4. T,t_ and Subt,tll

Report Documentation Page

2, Govemn'_n| A¢cer_on No.

Towards Composition of Verified Hardware Devices

7. Author(|)

E. Thomas Schubert
Dr. K. Levitt
Gerald C. Cohen

9. _..o,,_,n= o,.;_,,_;',,o. N,m° ...,: A,:;;.,,

Boeing Military Airplanes
P.O. Box 3707, M/S 7J-24
Seattle, WA 98124-2207

12. Spon_o.ng A'gencv Narn_ inCl AOO_=SS

Langley Technical Monitor: Sally C. Johnson

3 Rectp_enli Cal=qog NO,

S. Report Da,e

NDv_mber 1991
6. Perro_m,n 00,gan_zat,6n C_e

IB. Perlormmg Org=nl,,a_on Reporl NO.

10.Wo,* U_t _o.

1|. Con|tlcl"ot Grin! No.

NASI-18586

I"_. "l'v_ of l%pom ancl Pe.oo Co_tre_:

Contractor Report

14. S_nrpo.ng Agency EOO_

15 SupDlurngnl_ry NOI=_-

16. A_ltta:!

Computers are being used in areas where no affordable level of testing is
adequate. Safety and life critical systems must find a replacement for
exhaustive testing to guarantee their correctness. Through a mathematical
proof, hardware verification can formally demonstrate that a design satisfies
its specification. However, hardware verification research has focused on
device verification and has largely ignored system composition verification.
To address these deficiencies, we examine how the current hardware verification
methodology can be extended to verify complete systems.

I_ Kl¥ WO#_ f_ug_ellaQ bY AulhollS)]

Hardware Verification

. Interpreters
Hierarchical Decomposition
Genera} Theories

Temporal Abstraction
; 1_ _cC_rtl v _l_b_l {O! i1,,_ ,¢_u,II

Unclassified

1_ Di|l,,bullon St=,ll_J"mnl

Unclassified

54


